Introduction to Jitter Techniques for High Speed Serial Technologies

Industry Trends

Fast Data Rates, More HF Loss

Reference Maxim Note HFDN-27.0 (Rev. 0, 09/03)

Industry Trends

Multiple Lanes Result in Crosstalk

Tektronix[®]

Anatomy of a Serial Data Link

Aspirational goal: 0 errors Practical Goal: Bit Error Rate < Target BER

• Since BER is the ultimate goal, why not measure it directly?

Tektronix[®]

TDR Measurements Basics

TDR Basics

Transition points involve combinations of solder joints, circuit board vias, and connectors:

these all can have substantial effect on the total link performance.

TDR also is capable of producing S-parameters

Jitter Basics

Definitions

Jitter Plot?

Tektronix[®]

Bandwidth & Harmonics

Digital Square Wave – Odd Fourier Sums

Tektronix[®]

8

Bandwidth & Harmonics

Digital Square Wave – Odd Fourier Sums

Tektronix[®]

9

What is Jitter?

- **-** Definitions
	- "The deviation of an edge from where it should be"
	- ITU Definition of Jitter: "Short-term variations of the significant instants of a digital signal from their ideal positions in time"

Jitter is caused by many things…

- Causes of Random Jitter
	- Thermal noise
		- Generally Gaussian
		- External radiation sources
		- Like background conversations...random and ever changing
- Causes of Periodic Jitter
	- Injected noise (EMI/RFI) & Circuit instabilities
		- Usually a fixed and identifiable source like power supply and oscillators
		- Will often have harmonic content
		- Transients on adjacent traces
		- Cabling or wiring (crosstalk)
	- PLL's problems
		- Loop bandwidth (tracking & overshoot)
		- Deadband (oscillation / hunting)
- Causes of Data Dependent Jitter
	- Transmission Losses
		- There is no such thing as a perfect conductor
		- Circuit Bandwidth
		- Skin Effect Losses
		- Dielectric Absorption
		- Dispersion *esp. Optical Fiber*
		- Reflections, Impedance mismatch, Path discontinuities (connectors)

Period Jitter

■ Period Jitter

- **Period Jitter**
- **-** Cycle-to-Cycle Jitter

– **Cycle-to-Cycle Jitter** is the first-order difference of the Period Jitter

Types of Jitter (Visualization)

- **Period Jitter**
- **Cycle-to-Cycle Jitter**
- **TIE (Time Interval Error)**

– **Period Jitter** is the first-order difference of the **TIE Jitter** (plus a constant) $P_n = TIE_n - TIE_{n-1} + K$

Types of Jitter (Visualization)

Advanced Jitter - Decomposition

Rj / Dj Separation

Motivations for Jitter Decomposition

- **Speed**: Directly measuring error performance at 1e-12 requires directly observing MANY bits (1e14 or more). This is time consuming! Extrapolation from a smaller population can be done in seconds instead of hours.
- **Knowledge**: Jitter decomposition gives great insight into the root causes of eye closure and bit errors, and is therefore invaluable for analysis and debug.
- **Flexibility:** Already have a scope on your bench? You can do Jitter@BER measurements without acquiring more, perhaps somewhat specialized equipment.

Common Terms

- Random Jitter (RJ)
- **Deterministic Jitter (DJ)**
	- Periodic Jitter (PJ)
	- Sinusoidal Jitter (SJ)
	- Duty Cycle Distortion (DCD)
	- Data-Dependent Jitter (DDJ)
	- Inter-Symbol Interference (ISI)
- **Bit Error Rate (BER)**
- Total Jitter ~ (TJ or TJ@BER)
- **Eye Width @BER**
	- versus Actual or Observed Eye **Width**

Random Jitter (RJ)

- **Jitter of a random nature is assumed to have a** Gaussian distribution (Central Limit Theorem)
- Histogram (estimate) \leftrightarrow pdf (mathematical model)
- **Peak-to-Peak = ... unbounded!**

Tektronix[®]

Deterministic Jitter (DJ)

- **•** Deterministic jitter has a bounded distribution: the observed peak-to-peak value will not grow over time
- \blacksquare Histogram = pdf (close enough)

Periodic Jitter (PJ, SJ)

- **TIE vs. time is a repetitive waveform**
- **Assumed to be uncorrelated with** the data pattern (if any)
- **Sinusoidal jitter is a subset of** Periodic Jitter

Duty Cycle Distortion (DCD)

- DCD is the difference between the mean TIE for rising edges and the mean TIE for falling edges
- **Causes**
	- Asymmetrical rise-time vs. fall-time
	- Non-optimal choice of decision threshold
- For a clock signal, the pdf consists of two impulses

Tektronix

Data-Dependent Jitter

- DDJ or PDJ used interchangeably
- ISI usually considered to be the physical effect that causes DDJ
- **Characterizes how the jitter on each transition is correlated with** specific patterns of prior bits
	- Due to the step response of the system
	- Due to transmission line effects (e.g. reflections)

Composite Jitter Rj/Dj using dual-dirac or Spectral method?

- "Turn it on and run it for a while…"
- **Historical Eye-Closure Measurement**
- Jitter value including all Rj+Dj components
- Expressed as 1 sigma RMS or Pk-Pk
- **Unbounded, result depends on measurement interval**

1000 Hits, 10 ps RMS, 40 ps Pk-Pk 644M Hits, 44 ps RMS, 166 ps Pk-Pk

► Histograms vs. Eye Diagrams : Dual Dirac method, Rj and Dj

How open is the eye, anyway?

(…depends how long you watch)

Elements of the Dual-Dirac Model

$$
\left[\delta(x-\mu_L) + \delta(x-\mu_R)\right] * \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) = \frac{1}{\sqrt{2\pi}\sigma} \left[\exp\left(-\frac{(x-\mu_L)^2}{2\sigma^2}\right) + \exp\left(-\frac{(x-\mu_R)^2}{2\sigma^2}\right)\right]
$$

More about Bathtub Rjδδ/Djδδ *from* Tj @ BER

Assume bi-modal distribution (dual-Dirac), measure Tj at two BER

Fit curve to points, slope is Rj, Intercept is Dj

Tektronix[®]

DJ(dd): Model Dependence of DJ (2)

$DJ(\delta\delta) \leq DJ(p-p)$

- … Is the reason dual-Dirac is controversial
- **It's okay for a model to have model-dependent** parameters
- **Make sure to use** $DJ(\delta\delta)$ in $TI(BER) = 2Q_{BER} \times RJ + DJ$

Besides

- It's easier to measure $DJ($\delta\delta$)$ than $DJ(p-p)$
- For getting TJ(BER), DJ($\delta\delta$) is more useful than DJ(p-p)

Spectral Method Rj/Dj but Pj DCD and ISI

- **Start with**
	- TIE
	- PLL TIE
- **Perform FFT**
	- Determine frequency and pattern rate
	- Measure RMS of background bins
	- Sum pattern related bins
	- Sum unrelated periodic bins via iFFT
	- Estimate BER

Bounded Uncorrelated Jitter

- **Interconnect and board layout technology is** advancing and the greatest area of focus is in reducing the insertion loss and Signal-to-Crosstalk ratio.
- **The implications of complex channel interaction** can be observed and identified by examining the type and amount of Bounded Uncorrelated Jitter or BUJ.
- There is a strong Cause–and-Effect relationship between Crosstalk and BUJ which often gets classified as Random if special steps are not observed.

Table 4-6. Stressed Receiver Conditions

Bounded Uncorrelated Jitter (BUJ)

- **Definitions of Jitter Properties:**
	- **Bounded**: Having a PDF (histogram) that does not grow in width as the observation interval increases

- **Uncorrelated**: Specifically, not correlated to the pattern of data bits
	- Note that PJ (Periodic Jitter) is both bounded and uncorrelated \rightarrow BUJ!
- **Deterministic**: Future behavior can be predicted based on observed past.
	- Deterministic jitter is always bounded
	- But… bounded jitter isn't necessarily deterministic
- **RJ**: By convention, random jitter with a Gaussian histogram
- **NPJ or NP-BUJ**: Non-Periodic (Bounded Uncorrelated) Jitter. This is basically random jitter with a bounded PDF

Jitter Measurement in the Presence of Crosstalk: Problem Summary

- Crosstalk-caused jitter typically is Bounded Uncorrelated Jitter (BUJ); depending on the spectra this should be separated as either
	- PJ (Periodic BUJ)

or

- NPJ (Non-Periodic BUJ)
- **IF In traditional oscilloscope-based jitter measurement methodology the** more spectrally diffuse BUJ components (i.e. NPJ) are not distinguished from RJ.
	- The inflated RJ is multiplied by a factor, thereby grossly inflating TJ.

Example: $TJ = DJ + 14*RJ$ (at BER = 1e-12)

This is well known and was documented e.g. in "*Method of BER Analysis of High Speed Serial Data Transmission in Presence of Jitter and Noise*", Zivny at all, DesignCon 2007.

Crosstalk Problem Summary (Graphical Version)

 0.35 0.4 0.45 0.5

 0.05 0.1 0.15 0.2 0.25 0.3 $\times 10^4$

 $\times 10^{-11}$

36 6/24/2016
Theory: Q-Scale Analysis for Detecting NPJ

• Cumulative Distribution Function (CDF) for a Gaussian Distribution:

$$
CDF(x_{Gaus}) = \frac{1 + erf\left(\frac{x}{\sigma\sqrt{2}}\right)}{2}
$$

Q Scale Definition:

$$
Q(x) = \sqrt{2} \cdot erf^{-1}(2CDF(x) - 1)
$$

• Q Scale for a Gaussian:

$$
Q(x_{Gaus}) = \frac{x}{\sigma}
$$

– This is a straight line with a slope of $1/\sigma!$

Separation of BUJ and RJ Jitter Components Methodology

- After PJ and DDJ are removed using the spectral approach, RJ + NPJ is converted to a histogram and then plotted using the Q Scale
- Straight lines are fitted to the left and right tails to determine both the RJ sigma and the dual-dirac weight of the NPJ

Spectral-Only Method: $TJ(1e-12) = 0.00 + 3.056 * 14 = 42.8$ ps Spectral+BUJ Method: TJ(1e-12) = 2.79 + 2.303 * 14 = 35.0 ps

Tektronix

DPOJET Setup for BUJ / NPJ Measurements

- **Enable** Spectral+BUJ either through the Preferences Setup or the Jitter Map
- **Minimum # of UI** control is only available via Preferences Setup
	- Default is 1M but it can be reduced as low as 10k.
	- Agilent EZJIT has a similar (non-adjustable) population requirement, ~ 150k

DPOJET Results for BUJ / NPJ Measurements

 Clock NPJ measurement shows actual progress toward the population requirement

Jitter Visualization

Gaussian Random Noise **Sinusoidal Jitter**

Jitter Visualization – Bathtub Plot

- **Shows the Eye Opening at a Specified BER Level**
- Note the eye closure of System I vs. System II due to the RJ- RJ is unbounded so the closure increases as BER level increases
	- System I has .053UI of RJ with no PJ
	- System II has .018UI of RJ and .14UI of PJ @ 5 and 10Mhz

Jitter Visualization – Time Trend

- **Histogram does not have any context of time**
- **Time Trend can reveal repeating patterns that may indicate** modulation on the signal
	- For example 5 cycle of SSC @ 30khz as shown below

Jitter Visualization – Spectral Plot

- Frequency domain view of the signal content
- Deterministic components show as lines above the noise
	- DDJ is at frequencies of the bit rate / pattern length (example below is 5Gb/s PRBS7) Note the spikes at intervals of 40Mhz in the plot.
	- Constant Clock CR was used

TIE Jitter needs a Reference Clock

- The process of identifying the reference clock is called Clock Recovery.
- **There are several ways to define the reference clock:**
	- Constant Clock with Minimum Mean Squared Error
		- This is the mathematically "ideal" clock
		- But, only applicable when post-processing a finite-length waveform
		- Best for showing very-low-frequency effects
		- Also shows very-low-frequency effects of scope's timebase
	- Phase Locked Loop (e.g. Golden PLL)
		- Tracks low-frequency jitter (e.g. clock drift)
		- Models "real world" clock recovery circuits very well
	- Explicit Clock
		- The clock is not recovered, but is directly probed
	- Explicit Clock (Subrate)
		- The clock is directly probed, but must be multiplied up by some integral factor

Reference Clock for Jitter : Clock Recovery?

In a receiver

- **The clock positions the sampling point**
- **Comparator determines logic level**

How can we reduce the effect of jitter in the decision circuit?

Tektronix

Phase Locked Loop Clock Recovery

To extract a useful clock, the data must…

- **Have plenty of logic transitions**
	- No long runs of identical bits
- Be DC balanced

Data signals are encoded, e.g., 8B/10B encoding

JTF vs PLL Loop Bandwidth

- Configuring the correct PLL settings is key to correct measurements
- **Most standards have a reference/defined CR setup** – For example, USB 3.0 uses a Type II with JTF of 4.9Mhz
- **Type I PLL**
	- Type I PLL has 20dB of roll off per decade
	- JTF and PLL Loop Bandwidth are Equal
- **Type 2 PLL**
	- Type II PLL has 40dB of roll off per decade
	- JTF and PLL Loop Bandwidth are not Equal
		- For example, USB 3.0 uses a Type 2 PLL with a JTF of 4.9Mhz. The corresponding loop bandwidth is 10.126 Mhz
		- Setting the Loop Bandwidth as opposed to JTF will lead to incorrect jitter measurement results

PLL Loop Bandwidth vs. Jitter Transfer Function (JTF)

Effect of CR Bandwidth on Eye Opening

Results depend on CR Settings USB 3.0 Example

- The example below shows the effects of using a JTF set to 4.9Mhz vs. Loop Bandwidth set to 4.9Mhz for a Type II PLL
- Note the difference in the jitter that is tracked
	- The results on the left are correct as the JTF was properly set to
		- 4.9Mhz, as opposed to the loop bandwidth

Further Comparison of PLL Types using Spectrum Plots

First Cursor in each plot is @ 33Khz to illustrate effect on SSC

Further Comparison of PLL Types using Transfer Function Plots

Type II 40 dB roll off per decade @ 4.9Mhz

JTF Filtering Effects based on different PLL bandwidths

Open Closed Eyes *Apply Receiver Equalization*

- The example below shows a PCI Express 3.0 signal at the far end (input to the receiver)
	- Note that the eye is closed
	- Note that clock recovery would have failed due to the channel loss
	- After applying DFE equalization the signal can be measured with DPOJET

The problem *is the channel* …

 \rightarrow Channel exhibits large frequency dependent loss

- Loss/dispersion of the channel closes the eye
- Receivers now incorporate methods to compensate for loss (equalization)

Equalization: The solution #1: High Frequency "Boost"

The problem is just what you'd think it would be:

 …you need to boost the channel so much.

The noise amplification is huge, and it hurts the improvement you get (Signal to noise)

Equalization: CTLE frequency response

- **CTLE Continuous Time Linear Equalization**
- **Linear HF filter/boost**
- **Advantages: Low power & Simple implementation**
- **•** ... but it amplifies noise

Channel Testing *Simulate Compliance Channels*

Channel Testing *Simulate Compliance Channels*

Trois Instruments pour la même mesure Tx?

Real-time Scope, Sampling Scope, BERT Scope

Scope BW 70GHz AWG BW 18GHz

Standard tool for Tx test Datacom

Rx test < 6.25Gbits

Optical and Electrical BW 80GHz

Standard tool for Tx test Telecom

No Rx test

BERT Scope 28.6Gbits Tx/Rx

PPG 40Gbits Tx/Rx

Standard tool for Rx test Super High speed

No Tx test

Real -time Scope

Advanced trigger on signal No clock need

> **Built in Clock recovery**

One sample every 5ps with continue acquisition (depend on memory)

Dual -Dirac /spectral and Q -scale method for complete Tx analysis

Tektronix[®]

Sampling Scope

Electrical and Optical acquisition

Need external trigger clock

Need external Clock recovery

> **Only Tx measurement**

80GHz BW but only repetitive acquisition at 300kS/s

Very precise Rj measurement. Trigger Jitter scope <100fs

Tektronix[®]

BERT Scope

Need external trigger clock

Need external Clock recovery

28.6Gbit Rx and Tx

See all bit and can measure Tj directly (no extrapolation)

> **Stressed Eye capability**

Eye diagram and Jitter map capability

> **Error Location capability**

PRBS31 length capabilityTektronix®

1. Stressed Receiver Tolerance Testing **Start Testing Quickly**

Tektronix[®]

- 1. Recall stressed eye configuration
- 2. Apply stressed eye signal to DUT's receiver
- 3. DUT loops received bits back to BERTScope Error Detector
- 4. BERTScope counts any errors

2. Creating the Stressed Signal

Dynamically change Data Rate, Stress, Pattern

3. BER-Based Analysis Deep Insight with the BERTScope Toolkit

4. Drilling Down From Eye to Errors Linked Tools Enable Deep Insight

5. Jitter Map

6. The Right Companion Products The BERTScope Product Family Makes Compliance Easy

Tektronix[®]

BERTScope® Family of Products

 BSA Family is a series of BERT and Analysis tools spanning 500Mbps to 28.6Gbps. Upgrades avenues from lower performing units to higher performing ones will continue to be preserved.

Tektronix LE320/LE160 32 & 16Gbps Linear Equalizer Product Introduction

- Compact two channel 32Gbps 9 Tap linear equalizer design in a "remote module" configuration
- +-20dB tap controls offer flexible pre-emphais or channel de-embed capabilities.
- **User (and PI) configurable filter** properties allows flexible parametric equalization
- Electronically switchable frequency dependent filter capability permits DDJ tolerance testing and testing against known reference channel models
- Front-end signal path (CTLE) for Sampling or BERT Instruments

Tektronix LE320 32G Linear Programmable Equalizer

9 Tap linear equalizer design, supporting 14-32Gbps operation

Tektronix[®]

PPG/PED

PPG Base Instruments

- **PPG1251** 12.5Gb/s PPG Jitter insertion (LF+HF)
- **PPG300X** 30Gb/s PPG - LF jitter insertion 1/2/4 Channel
	- HF jitter insertion

PPG320X 32Gb/s PPG

- 1/2/4 Channel
- Adjustable output
	- LF jitter insertion
- HF jitter insertion
- **PPG4001** 40Gb/s PPG
	- LF jitter insertion
	- HF jitter insertion

PPG3204 32Gb/s 4 channel PPG

PED3202 32Gb/s 2 channel PED

PED Base Instruments

- **PED320X** 32Gb/s PED
- 1/2 Channel
- Full or half rate clock input
- AC or DC coupled input

PPG400X 40Gb/s PED

- 1/2 Channel
	- Full or half rate clock input
	- AC or DC coupled input

32Gb/s and 40Gb/s SERDES JTOL testing

SERDES JTOL Testing

Some ASICs/FPGAs have built-in BER testing and don't require loop back with a PED

Advantages

- Separate PPG and PED for users with on-chip BER capabilities
- Low intrinsic jitter
- Fast rise-fall times and high signal integrity
- SJ/RJ/BUJ insertion for standards compliance tests
- Software analysis tools *(bathtubs, JTOL, J2/J9, etc)*
- Easy-to-use touchscreen and USB programmability

100G Ethernet SR4/LR4/ER4 transceiver testing

Note: Tektronix CR286 may be added for clock recovery

Advantages

- Flexible multi-channel solution
- Low intrinsic jitter
- Fast rise-fall times and high signal integrity
- SJ/RJ/BUJ insertion for standards compliance tests
- Software analysis tools *(bathtubs, JTOL, J2/J9, etc)*
- Easy-to-use touchscreen and USB programmability

What is PAM?

Pulse **A**mplitude **M**odulation

–PAM4 combines two bit streams and uses 4 levels to encode 2 bits into 1 UI

–For Example, 56 Gbit/s PAM4 runs at a symbol rate of 28 GBaud

What are the differences between PAM4 and NRZ?

- \blacksquare PAM4
	- -4 Levels \rightarrow 3 Eyes
	- Sensitive to SNR (eyes smaller)
	- 2 bits into 1 UI
	- $-$ 1/₂ Symbol Rate for same data throughput $(28 \text{ GBaud} = 56 \text{Gbps})$
	- Adds complexity/cost to Tx/Rx

- **NRZ**
	- -2 Levels \rightarrow 1 Eye
	- Less Sensitive to SNR
	- -1 bit in 1 UI
	- 2X Symbol Rate for same data throughput (28GBaud = 28Gbps)

Considerations for a PAM4 Signal Generation Engine

Manufacturing

PAM4 Generation & BER Analysis using Pattern Generators

- **PED3202 Error Detector**
- BERT products bundled into a PAM4 system:
	- Programmable pattern generator
	- Programmable error detector
	- **Analysis software**
	- **Broadband components** (power combiners/attenuators)
- PAM4 Pattern Generator
	- Phase-aligned channels simplify multi-level signal generation
- User-programmable data patterns allow test of PAM4 custom data
- PAM4 Error Detector
	- BER measurements analyzes every bit of each pattern
	- Contour plots, bathtub curves, total jitter analysis via software tools
	- Can be used for BER measurements generated by PPG and/or AWG

Test Methodologies for PAM Signaling Validation

Tektronix provides complete support for validation of PAM4 at 28 & 56G

